

WP4 - CLS TECHNOLOGY 2ND YEAR REPORT – PART 2

Outline

Superlattice: model and manufacturing

Superlattice: characterization

Characterization for others partners

Objectives

- O4.1 Fabrication of high-quality bent and periodically bent crystals (silicon, germanium) by means of surface modification techniques. Extensive characterization of samples via XRD in parallel with their fabrication.
- O4.2 Optimization and characterization of the PLM process to fabricate surface localized stressor alloys on Si and Ge surface; realization of PLM processed PC and PBC optimised for gamma emission.
- O4.3 Experimental determination of AW generation and propagation in crystals; monitoring dynamic bending of the crystals.
- O4.4 Feasibility studies on laser pulse AW generation and propagation; monitoring the dynamic bending of the crystals.
- O4.5 Periodically bent Si-Ge superlattices with parameters suitable for channeling experiments with e- and e+-beams → extended to Boron-doped diamond superlattices

Different CU technology for PBCs

→ Strained Superlattice Method

- Crystal planes undulation is not macroscopic and linked to sample shape/stress/strain
- > But is directly forced in the crystal lattice by doping of the material, following Vegards'law

Advantages:

No subsequent mechanical operation \rightarrow no damage Sub-micrometric growth control \rightarrow **short periods** (λ from few microns or a few tens of microns), suitable for e- and e+- for Gamma-ray generation O4.4

6

Superlattice principles

Normal cubic crystal: flat planes

Superlattice principles

Undoped substrate

Growth with increasing doping = increase in crystal parameter along [100].

Growth with decreasing doping = decrease in crystal parameter along [100]

Channeling along [110]: undulation

On several successive doped layers = periods

TECHNO-CL

O4.4				Ç)	TECHNO-CL
Key points	Property Band gap Dielectric constant Breakdown voltage Thermal conductivity Sat. drift velocity e ⁻		Si 1.1 <i>i</i> 11.8 0.3 1.5 1.0	4H-SiC 3.23 <i>i</i> 9.8 3 5 2.0	GaN 3.45 d 9 2 1.5 2.2	$\begin{array}{r} \hline \text{Diamond} \\ \hline 5.45 \ i \\ 5.5 \\ 10 \\ 22 \\ 2.7 \\ \hline \end{array}$
Matrix material B-doped	Sat. drift velocity h ⁺ Electrons mobility Holes mobility Johnson's FOM Keyes' FOM	$v_s [10^{i} cm/s]$ $\mu_e [cm^2/V.s]$ $\mu_h [cm^2/V.s]$ $JFM [10^{23} \Omega.W/s^2]$ $KFM [10^7 W/K.s]$	1.0 1500 480 2 9	1000 100 911 49	1250 200 490 16	$ \begin{array}{r} 1.1 \\ 1000 \\ 2000 \\ 3064 \\ 215 \\ \end{array} $
Doping elements	Baliga's FOM Excellent synchrotron ac	<i>BFM</i> [Si=1] thermomechan daption for partic	1 ical p	554 propert	188 ies an	23017 d urpose
Number of periods	-				0,	·
Period size	s : two mode	els (from ca	alcı	Ilatic	on)	
Level of doping						

Two models calculated

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

JGU @Mainz team

Design for electron channeling

Year I-II: manufacturing two and four periods

Design for electron/proton channeling Year II: manufacturing two periods

O4.4

Boron-doped diamond manufacturing

Microwave Plasma Chemical Vapor Deposition (MPCVD) growth process

Temperature 850°C H_2 = for plasma environement CH_4 = Carbon precursor for diamond B_2H_6 = Boron precursor for doping, **variable flow**

CHARACTERIZATION OF SUPERLATTICES

- \rightarrow Doping profile by SIMS
- \rightarrow Surface characterization by metrology
- \rightarrow Crystalline quality by X-Ray Diffraction Imaging

Pre-characterization of CU samples

Measurement of effective Boron profiles → Secondary ion mass Spectrometry (SIMS)

Control of thickness (each period and total). Progress in achieving the targeted, regular profile. Doping level in expected range.

13

ECHNO-CLS

Pre-characterization of CU samples

Measurement of roughness and shape of samples \rightarrow Surface metrology

Hillock = defect due to highly Boron doped during the growth

μm

90

80

70

60

50

40

30

20

10

0

0

15 30 45

Case with dense hillocks population

Recent sample: wide areas without hillock and low roughness

60

- 0.0

-0.5

-0.6

ECHNO-CLS

75 90 105 120 μm

Characterization by X-ray diffraction imaging

@ESRF – BM05 beamline

 → Powerful technique for crystal lattice characterization:
 *Crystalline quality
 *Lattice parameter variation
 *Curvature, strain
 *Defects

 \rightarrow Essential for superlattice characterization but also for other types of CU

O4.4

Characterization by X-ray diffraction imaging

measurement on (400) planes = parallel to the surface = direction of growth

\rightarrow Estimation of the crystal lattice parameter: increases because of doping as expected

16

ECHNO-CLS

measurement on (022) planes (by narrow beam) sensible to the sample depth

 \rightarrow Estimation of the crystal lattice parameter: increases but less and varies little

TECHNO-CLS

18

Peak position map

1.2 mm

cross-section diagram

3D diagram

→ Observation of curvature Average curvature of the sample "egg crate foam" at smaller scale

Characterization by X-ray diffraction imaging

Integrated intensity map (AU) **Transmission**

Recent case. Intensity hillock / intensity without hillock ~ 3 Crystal quality better for areas without hillocks And no observation of "egg crate foam"

1.2 mm

X-RAY DIFFRACTION IMAGING FOR OTHERS PROJECT'S PARTNERS

Objectives

- O4.1 Fabrication of high-quality bent and periodically bent crystals (silicon, germanium) by means of surface modification techniques. Extensive characterization of samples via XRD in parallel with their fabrication.
- O4.2 Optimization and characterization of the PLM process to fabricate surface localized stressor alloys on Si and Ge surface; realization of PLM processed PC and PBC optimised for gamma emission.
- O4.3 Experimental determination of AW generation and propagation in crystals; monitoring dynamic bending of the crystals.
- O4.4 Feasibility studies on laser pulse AW generation and propagation; monitoring the dynamic bending of the crystals.
- O4.5 Periodically bent Si-Ge superlattices with parameters suitable for channeling experiments with e- and e+-beams

Characterization by X-ray diffraction imaging @ESRF

→ Support for @UNIFE/INFN/UNIPD team for BCs (PLM) characterization: ESRF measurement for control bulk properties of the material

→ Support for @UNIFE/INFN team for PBCs with thin film pattern deposition:

ESRF measurement for control of Silicon bulk crystal

Example for @UNIFE/INFN

Silicon bulk for PBCs fabrication

Excellent quality: zero dislocation density

(FWHM variation due to curvature associated to the way of holding the sample)

22

X-ray diffraction imaging data treatment and analysis

→ @ESRF team support for @UNIFE/INFN/UNIPD teams: Treatment & analysis of data acquired at the Diamond Light Source (same type of measurement but different data format)
→ New python code for analysis

on analysis of characterization of **Bents Silicon** sample

sample 111 110

Cross-section of Si sample

15μm

Thin Si sample flexion induces Quasi-Mosaic curvature \rightarrow (111) planes are bent (R_{curvature} ≈3-4cm)

(111) planes usable for particles channeling

 \rightarrow Required characterization of crystal torsion by X-ray diffraction Imaging on (111) planes.

Flexion of Si bulk thanks to metal static holder

X-ray diffraction imaging data treatment and analysis

→ @ESRF team support for @UNIFE/INFN/UNIPD teams: Treatment & analysis of data acquired at the Diamond Light Source (same type of measurement but different data format)
→ New python code for analysis

Peak position maps and profiles provided.

Except for the 1mm near the edge, planes remain aligned within the channeling critical angle

X-ray diffraction imaging data treatment and analysis

→ @ESRF team support for @UNIFE/INFN/UNIPD teams: Treatment & analysis of data acquired at the **Diamond Light Source** (same type of measurement but different data format) \rightarrow New python code for analysis

2d map for plane tilt

25

Profile map for map tilt

Double grooving pattern shifted induces crystal sinusoidal deformation \rightarrow Required to measure the crystal sinusoidal bendig

Peak position maps and profiles provided. Evidence of periodic behaviour. Artifact from not uniform thickness and damage cause by grooving (resolved by upgraded techniques of SiN deposition and PLM)

X-ray diffraction imaging data treatment and analysis

→ @ESRF team support for @UNIFE/INFN/UNIPD teams: Treatment & analysis of data acquired at the Diamond Light Source (same type of measurement but different data format)
→ New python code for analysis

on analysis of characterization of **Silicon Carbide** sample

Crystal for radiation enhancement of gamma photon

→ Required to measure the bulk crystalline quality (mosaicity)

Peak position maps provided. Imperfection detected: average mosaicity of ~400 µrad. Phenomena of radiation enhancement persisted (cf WP3)

TECHNO-CLS

CONCLUSION

- Manufacturing and characterization of "superlattice" B-doped diamond Good progress on controlling of superlattice parameters
 - \rightarrow Channeling and radiation efficience tested at @MAMI
- Synchrotron advanced X-ray diffraction technique to characterize other crystals as project support
- Data treatment and analysis as project support
 - \rightarrow Channeling and radiation efficience tested at @MAMI

Thank you for your attention