

WP4 - CLS TECHNOLOGY2ND YEAR REPORT – PART 2

Outline

 \triangleright Superlattice: model and manufacturing

 \triangleright Superlattice: characterization

 \triangleright Characterization for others partners

SUPERLATTICE: MODEL AND MANUFACTURING

Objectives

- *O4.1 Fabrication of high-quality bent and periodically bent crystals (silicon, germanium) by means of surface modification techniques. Extensive characterization of samples via XRD in parallel with their fabrication.*
- *O4.2 Optimization and characterization of the PLM process to fabricate surface localized stressor alloys on Si and Ge surface; realization of PLM processed PC and PBC optimised for gamma emission.*
- *O4.3 Experimental determination of AW generation and propagation in crystals; monitoring dynamic bending of the crystals.*
- *O4.4 Feasibility studies on laser pulse AW generation and propagation; monitoring the dynamic bending of the crystals.*
- *O4.5 Periodically bent Si-Ge superlattices with parameters suitable for channeling experiments with e- and e+-beams [→] extended to Boron-doped diamond superlattices*

Different CU technology for PBCs

→ Strained Superlattice Method

- \blacktriangleright Crystal planes undulation is not macroscopic and linked to sample shape/stress/strain
- \blacktriangleright But is directly forced in the crystal lattice by doping of the material, following Vegards'law

Advantages:

No subsequent mechanical operation → no damage Sub-micrometric growth control [→] short periods (λ from few microns or a few tens of microns), suitable for e- and e+- for Gamma-ray generation

O4.4

6

Superlattice principles

Normal cubic crystal: flat planes

Superlattice principles

Undoped substrate

Growth with increasing doping = increase in crystal parameter along [100].

Growth with decreasing doping = decrease in crystal parameter along [100]

Channeling along [110]: undulation

ECHNO-CL

8

On several successive doped layers = periods

Two models calculated

JOHANNES GUTENBERG

Design for electron channeling

Year I-II: manufacturing two and four periods

Design for electron/proton channeling *Year II: manufacturing two periods*

Boron-doped diamond manufacturing

Microwave Plasma Chemical Vapor Deposition (MPCVD) growth process

Temperature 850°C H2 = for plasma environement CH4 = Carbon precursor for diamond B2H6 = Boron precursor for doping, variable flow

CHARACTERIZATION OF SUPERLATTICES

- \rightarrow Doping profile by SIMS
- \rightarrow Surface characterization by metrology
- \rightarrow Crystalline quality by X-Ray Diffraction Imaging

Pre-characterization of CU samples

Measurement of effective Boron profiles \rightarrow Secondary ion mass Spectrometry (SIMS)

Control of thickness (each period and total). Progress in achieving the targeted, regular profile. Doping level in expected range.

13

TECHNO-CLS

Pre-characterization of CU samples

Measurement of roughness and shape of samples \rightarrow Surface metrology

Hillock = defect due to highly Boron doped during the growth

μm

90

80

70

60

50

40

30

20

10

0

0

15 30 45

Recent sample: wide areas without hillock and low roughness

60 75 90 105 120 μ m

μm

 1.20

 -1.00

 -0.50

 -0.0

 -0.5

 -0.6

ECHNO-CLS

14

Characterization by X-ray diffraction imaging

@ESRF – BM05 beamline

 \rightarrow Powerful technique for crystal lattice characterization: *Crystalline quality *Lattice parameter variation *Curvature, strain *Defects

 \rightarrow Essential for superlattice characterization but also for other types of CU

O4.4

measurement on (400) planes = parallel to the surface = direction of growth

[→] Estimation of the crystal lattice parameter: increases because of doping as expected

16

TECHNO-CLS

Characterization by X-ray diffraction imaging

measurement on (022) planes (by narrow beam) sensible to the sample depth

→ Estimation of the crystal lattice parameter: increases but less and varies little

TECHNO-CLS

18

Peak position map

cross-section diagram

3D diagram

→ Observation of curvatureAverage curvature of the sample ''egg crate foam'' at smaller scale

Characterization by X-ray diffraction imaging

Integrated intensity map (AU) Transmission

 $6.84e + 04$

Recent case. Intensity hillock / intensity without hillock \sim 3 **Crystal quality better for areas without hillocks And no observation of ''egg crate foam''**

X-RAY DIFFRACTION IMAGING FOR OTHERS PROJECT'S PARTNERS

Objectives

- *O4.1 Fabrication of high-quality bent and periodically bent crystals (silicon, germanium) by means of surface modification techniques. Extensive characterization of samples via XRD in parallel with their fabrication.*
- *O4.2 Optimization and characterization of the PLM process to fabricate surface localized stressor alloys on Si and Ge surface; realization of PLM processed PC and PBC optimised for gamma emission.*
- O4.3 Experimental determination of AW generation and propagation in crystals; monitoring *dynamic bending of the crystals.*
- *O4.4 Feasibility studies on laser pulse AW generation and propagation; monitoring the dynamic bending of the crystals.*
- O4.5 Periodically bent Si-Ge superlattices with parameters suitable for channeling *experiments with e- and e+-beams*

Characterization by X-ray diffraction imaging @ESRF

→ **Support for @UNIFE/INFN/UNIPD team for BCs (PLM)** characterization: ESRF measurement for control bulk properties of the material

 \rightarrow **Support for @UNIFE/INFN team for PBCs** with thin film pattern deposition:

ESRF measurement for control of Silicon bulk crystal **ESRF** measurement for control of Silicon bulk crystal

Example for @UNIFE/INFN

Silicon bulk for PBCs fabrication

Excellent quality: zero dislocation density

(FWHM variation due to curvature associated to the way of holding the sample)

22

X-ray diffraction imaging data treatment and analysis

→ **@ESRF team support for @UNIFE/INFN/UNIPD teams**: Treatment & analysis of data acquired at the **Diamond Light Source** (same type of measurement but different data format) **→ New python code for analysis**

on analysis of characterization of Bents Silicon sample

111

110

Flexion of Si bulk thanks to metal static holder

Cross-section of Si sample

Thin Si sample flexion induces Quasi-Mosaic curvature \rightarrow (111) planes are bent $(R_{curvature}$ ≈3-4cm)

BCs

(111) planes usable for particles channeling

 \rightarrow Required characterization of crystal torsion by X-ray diffraction Imaging on (111) planes.

X-ray diffraction imaging data treatment and analysis

→ **@ESRF team support for @UNIFE/INFN/UNIPD teams**: Treatment & analysis of data acquired at the **Diamond Light Source** (same type of measurement but different data format) **→ New python code for analysis**

Peak position maps and profiles provided.

Except for the 1mm near the edge, **planes remain aligned within the channeling critical angle**

X-ray diffraction imaging data treatment and analysis

→ **@ESRF team support for @UNIFE/INFN/UNIPD teams**: Treatment & analysis of data acquired at the **Diamond Light Source** (same type of measurement but different data format) **→ New python code for analysis**

25

Profile map for map tilt

Double grooving pattern shifted induces crystal sinusoidal deformation \rightarrow Required to measure the crystal sinusoidal bendig

25(resolved by upgraded techniques of SiN deposition and PLM) **Peak position maps and profiles provided. Evidence of periodic behaviour. Artifact from not uniform thickness and damage cause by grooving**

X-ray diffraction imaging data treatment and analysis

→ **@ESRF team support for @UNIFE/INFN/UNIPD teams**: Treatment & analysis of data acquired at the **Diamond Light Source** (same type of measurement but different data format) **→ New python code for analysis**

on analysis of characterization of Silicon Carbide sample

Crystal for radiation enhancement of gamma photon

 \rightarrow Required to measure the bulk crystalline quality (mosaicity)

Peak position maps provided. Imperfection detected: average mosaicity of ~400 µrad. Phenomena of radiation enhancement persisted (cf WP3)

CONCLUSION

- **Manufacturing and characterization of ''superlattice'' B-doped diamond** Good progress on controlling of superlattice parameters
	- \rightarrow Channeling and radiation efficience tested at @MAMI
- \triangleright Synchrotron advanced X-ray diffraction technique to characterize other crystals as project support
- \triangleright Data treatment and analysis as project support
	- \rightarrow Channeling and radiation efficience tested at @MAMI

Thank you for your attention