Techno CLS,

Work Package 3, Experimental issues, Part 1

Experiments @ MAMI

<u>Objectives</u>

- **O3.5** Channeling experiments with electrons and (positrons) in LC, BC and PBC crystals.
- **O3.4** Construction of a beam transport system for monochromatic low divergence 530 MeV positrons.

Experimental issues, Part 2 -> Talk Vincenzo Guidi WP3

W. Lauth, University of Mainz, Germany, Techno CLS Meeting, Online, June 2024,

Task T3.5 Measurement of radiation produced with channelled electrons (and positrons).

Experimental Setup (855) MeV e-

SIMS Profile - Bor concentration

 Cameca IMS
 9/29/2017

 Sample:
 W170802-D2
 Mitte Diamant-Bor_5kOx -11562 (4" Sample Holder (d110)-Default)
 Depth Profile

 Data file:
 W1:\Diamant\CVD_Bor\Sonstige\W170802-D2\V11562_W170802-D2_Mitte_Diamant-Bor_5kOx_29.09.17_14.33.2f2f-0\W170802-D2_Mitte_Diamant-Bor_5kOx -11562
 File

 File
 W:\Diamant\CVD_Bor\Sonstige\W170802-D2_V11562_W170802-D2_Mitte_Diamant-Bor_5kOx_29.09.17_14.33.2f2f-0\W170802-D2_Mitte_Diamant-Bor_5kOx -11562
 File

 Comments:
 Ox SkV, 216.043, Vt 126-> atomar,Temp#11561
 File

comments: 0x skv, 210na, vt 12C-> atomai, remp#11501

Talk of Rebecca Dowek

 $9 \cdot 10^{20}/cm^3 = 0.5\%$

4 period Diamond crystal

101 µm flat Diamond crystal reference

SIMS holes

4 period Diamond crystal Flip configuration

Scans with Ionisation chamber

<u>4 Period Diamond crystal, 855 MeV</u>

$$\hbar \omega = k \frac{4\pi \cdot \gamma^2 \hbar c}{\lambda_U (1 + K^2 / 2 + \gamma^2 (\theta_x^2 + \theta_y^2))} = 1.136 \text{ MeV}$$

at $\theta_x = \theta_y = 0$, and first order $k = 1$


```
Comparison 'Undulator' - Reference crystal
(110) plane (Undulator plane)
```


Channeling radiation of a flat diamond crystal

Channelling Radiation in Silicon Carbide

Exploration of a **new material** beside Silicon and Germanium

Low Z- atoms

LINEAR CRYSTAL 0.33 mm thickness, 4x7 mm² surface channelling Axis: <0001>

Silicon Carbide 6H <0001> axis

attice structure: Hexagonal (Space group #186)

Tightly packed planes perpendicular to <0001>, featuring properties in between Si and C, being cheaper than Diamond.

e-@855 MeV 30 SiC, Axis Diamond, Axis 25 SiC, Amorphous Spectrum intensity [A.U] Diamond, Amorphous 20 15 10 5 50 200 100 150 250 0 MeV

SiC 6H crystal: 0.33 mm thick axis <0001> Diamond crystal: 0.31 mm thick , axis <100>

Objective 3.4

O3.4 Construction of a beam transport system for monochromatic low divergence 600 MeV positrons.

T3.2 (Uni-Mainz, UNIFE, INFN) Design a setup for direct production of high-energy positrons with bremsstrahlung using the electron beam. Beam transport design for a low divergence positron beam from a conversion target. Radiation shielding simulations. **Experimental validation of the simulations.** Geant4 simulations for a position sensitive particle detector for the identification of positrons. Construction and test of such a detector at MAMI. Development of a low background detector for radiation measurements in the MeV region.

Pair production with the MAMI beam in combination with a monochromator

High quality Positron beam @ MAMI

Thin target for Positron production

10 µm
$$W \rightarrow Scattering \sigma_S = 0.94 \text{ mrad}$$

 $\sigma_p = \cong \frac{1}{\gamma} = 1 \text{ mrad } @500 \text{MeV}$

$$\varepsilon_{e+} = 10 \ \mu m \cdot 1.4 \ mrad$$

= $1mm \cdot 0.014 \ mrad$

10

Emittance of Positrons:

Production of high-energy positrons 10 m AREA AND AND AND A RTM2 00 0 Х RTM3 ABED

Overview Positron beam

Production Rate

Measurement of the beam size of the focused positron beam with the pixel detector

distance of 1.04 m from the centre of the crystal chamber

<u>Channeling of Positrons in Si crystals</u>

Detection of Positrons with pixel detector

Without crystal

200 µm (100) Si crystal

With oriented crystal

Random orientation of crystal

200 µm (100) Si crystal

110 Plane Rotation arround vertical axis

Mechanically bent Si crystal test with 530 MeV positrons

Guidi, V., et al.,, 2009. Journal of Physics D Applied Physics42(18). Germogli, G.,NIM B, 2015. 355: p. 81-85

Crystal label: BC-Si-QMO* Thickness along the beam: 29.9±0.1 μm Bent planes, exploiting quasimosaic effect (111) **Bending angle**: 970±10 μrad *Crystal available from a previous project @

Experimental results on beam steering of 530 MeV positrons

TECHNO-CLS MILESTONE: First high-efficient deflection of sub-GeV positron worldwide !!!

Fallout in :

Crystal-Light-Source

□ Channeling based technologies

Accelerator technologies: for beam steering, extraction, focusing..

Open access paper on arXiv Submitted to Phys. Rev. Lett.

530 MeV positrons* vs 855 MeV electrons**

Angular scan for deflected beam distribution: (1) and (6) nonchanneling regime; (2) channeling; (3) dechanneling; (4) volume reflection; and (5) volume capture.

INFN

Istituto Nazionale di Fisica Nucleare

<u>Future experiments with the Positron beam line</u>

- Deflection of positrons (J)
- Channeling radiation with positrons / Tagging of channeling radiation
- Characterization of CLS Prototypes
- Dechanneling length measurements
- Undulator radiation with periodically bent crystals

Count rate estimation for channeling radiation

Calculation H. Backe et al., arXiv:2404.15376

- Positron rate: ~2.10⁴ Positrons/s
- Reduction of beam spot size 2mm
 -> 5000 Positrons/s
- Solid angle $3 \cdot 10^{-7}$ sr (d=4mm, Distance 6m)
- Integral Channeling photons~ 3000/ (e⁺ sr)

Total Count Rate = Photons/($e^{+}sr$) · Solid angle · Positrons/s

= 3000/ (e⁺ sr) · $3 \cdot 10^{-7}$ sr · 5000 e⁺/s

Thanks for your attention

Horizon Europe EIC-Pathfinder Project TECHNO-CLS: "Emerging technologies for crystal-based gamma-ray light sources"

Università degli Studi di Padova

